Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Transplantation ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632678

RESUMO

BACKGROUND: Although it is acknowledged that ischemia-reperfusion injury is the primary pathology of cold storage-associated kidney transplantation, its underlying mechanism is not well elucidated. METHODS: To extend the understanding of molecular events and mine hub genes posttransplantation, we performed bulk RNA sequencing at different time points (24 h, day 7, and day 14) on a murine kidney transplantation model with prolonged cold storage (10 h). RESULTS: In the present study, we showed that genes related to the regulation of apoptotic process, DNA damage response, cell cycle/proliferation, and inflammatory response were steadily elevated at 24 h and day 7. The upregulated gene profiling delicately transformed to extracellular matrix organization and fibrosis at day 14. It is prominent that metabolism-associated genes persistently took the first place among downregulated genes. The gene ontology terms of particular note to enrich are fatty acid oxidation and mitochondria energy metabolism. Correspondingly, the key enzymes of the above processes were the products of hub genes as recognized. Moreover, we highlighted the proximal tubular cell-specific increased genes at 24 h by combining the data with public RNA-Seq performed on proximal tubules. We also focused on ferroptosis-related genes and fatty acid oxidation genes to show profound gene dysregulation in kidney transplantation. CONCLUSIONS: The comprehensive characterization of transcriptomic analysis may help provide diagnostic biomarkers and therapeutic targets in kidney transplantation.

2.
Commun Med (Lond) ; 4(1): 71, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605106

RESUMO

BACKGROUND: The field of Artificial Intelligence (AI) holds transformative potential in medicine. However, the lack of universal reporting guidelines poses challenges in ensuring the validity and reproducibility of published research studies in this field. METHODS: Based on a systematic review of academic publications and reporting standards demanded by both international consortia and regulatory stakeholders as well as leading journals in the fields of medicine and medical informatics, 26 reporting guidelines published between 2009 and 2023 were included in this analysis. Guidelines were stratified by breadth (general or specific to medical fields), underlying consensus quality, and target research phase (preclinical, translational, clinical) and subsequently analyzed regarding the overlap and variations in guideline items. RESULTS: AI reporting guidelines for medical research vary with respect to the quality of the underlying consensus process, breadth, and target research phase. Some guideline items such as reporting of study design and model performance recur across guidelines, whereas other items are specific to particular fields and research stages. CONCLUSIONS: Our analysis highlights the importance of reporting guidelines in clinical AI research and underscores the need for common standards that address the identified variations and gaps in current guidelines. Overall, this comprehensive overview could help researchers and public stakeholders reinforce quality standards for increased reliability, reproducibility, clinical validity, and public trust in AI research in healthcare. This could facilitate the safe, effective, and ethical translation of AI methods into clinical applications that will ultimately improve patient outcomes.


Artificial Intelligence (AI) refers to computer systems that can perform tasks that normally require human intelligence, like recognizing patterns or making decisions. AI has the potential to transform healthcare, but research on AI in medicine needs clear rules so caregivers and patients can trust it. This study reviews and compares 26 existing guidelines for reporting on AI in medicine. The key differences between these guidelines are their target areas (medicine in general or specific medical fields), the ways they were created, and the research stages they address. While some key items like describing the AI model recurred across guidelines, others were specific to the research area. The analysis shows gaps and variations in current guidelines. Overall, transparent reporting is important, so AI research is reliable, reproducible, trustworthy, and safe for patients. This systematic review of guidelines aims to increase the transparency of AI research, supporting an ethical and safe progression of AI from research into clinical practice.

3.
Cell Mol Biol Lett ; 29(1): 31, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439028

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common clinical disorder with complex etiology and poor prognosis, and currently lacks specific and effective treatment options. Mitochondrial dynamics dysfunction is a prominent feature in AKI, and modulation of mitochondrial morphology may serve as a potential therapeutic approach for AKI. METHODS: We induced ischemia-reperfusion injury (IRI) in mice (bilateral) and Bama pigs (unilateral) by occluding the renal arteries. ATP depletion and recovery (ATP-DR) was performed on proximal renal tubular cells to simulate in vitro IRI. Renal function was evaluated using creatinine and urea nitrogen levels, while renal structural damage was assessed through histopathological staining. The role of Drp1 was investigated using immunoblotting, immunohistochemistry, immunofluorescence, and immunoprecipitation techniques. Mitochondrial morphology was evaluated using confocal microscopy. RESULTS: Renal IRI induced significant mitochondrial fragmentation, accompanied by Dynamin-related protein 1 (Drp1) translocation to the mitochondria and Drp1 phosphorylation at Ser616 in the early stages (30 min after reperfusion), when there was no apparent structural damage to the kidney. The use of the Drp1 inhibitor P110 significantly improved kidney function and structural damage. P110 reduced Drp1 mitochondrial translocation, disrupted the interaction between Drp1 and Fis1, without affecting the binding of Drp1 to other mitochondrial receptors such as MFF and Mid51. High-dose administration had no apparent toxic side effects. Furthermore, ATP-DR induced mitochondrial fission in renal tubular cells, accompanied by a decrease in mitochondrial membrane potential and an increase in the translocation of the pro-apoptotic protein Bax. This process facilitated the release of dsDNA, triggering the activation of the cGAS-STING pathway and promoting inflammation. P110 attenuated mitochondrial fission, suppressed Bax mitochondrial translocation, prevented dsDNA release, and reduced the activation of the cGAS-STING pathway. Furthermore, these protective effects of P110 were also observed renal IRI model in the Bama pig and folic acid-induced nephropathy in mice. CONCLUSIONS: Dysfunction of mitochondrial dynamics mediated by Drp1 contributes to renal IRI. The specific inhibitor of Drp1, P110, demonstrated protective effects in both in vivo and in vitro models of AKI.


Assuntos
Injúria Renal Aguda , Animais , Camundongos , Suínos , Proteína X Associada a bcl-2 , Dinaminas , Nucleotidiltransferases , Trifosfato de Adenosina
4.
Cell Death Dis ; 15(3): 217, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485717

RESUMO

Recently, innate immunity and inflammation were recognized as the key factors for acute kidney injury (AKI) caused by sepsis, which is closely related to high mortality. Stimulator of interferon genes (STING) has emerged as a critical component of innate immune and inflammatory responses. However, the role of STING in the pathogenesis of septic AKI remains unclear. This study demonstrated that the STING was significantly activated in tubular cells induced by lipopolysaccharide (LPS) in vivo and in vitro. Tubule-specific STING knockout attenuated LPS-induced renal dysfunction and pathological changes. Mechanistically, the STING pathway promotes NOD-like receptor protein 3 (NLRP3) activation. STING triggers endoplasmic reticulum (ER) stress to induce mitochondrial reactive oxygen species (mtROS) overproduction, enhancing thioredoxin-interacting protein activation and association with NLRP3. Eventually, the NLRP3 inflammasome leads to tubular cell inflammation and pyroptosis. This study revealed the STING-regulated network and further identified the STING/ER stress/mtROS/NLRP3 inflammasome axis as an emerging pathway contributing to tubular damage in LPS-induced AKI. Hence, targeting STING may be a promising therapeutic strategy for preventing septic AKI.


Assuntos
Injúria Renal Aguda , Piroptose , Humanos , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Injúria Renal Aguda/patologia , Inflamação/patologia , Proteínas NLR , Estresse do Retículo Endoplasmático
5.
Am J Physiol Cell Physiol ; 326(3): C935-C947, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284121

RESUMO

The molecular basis of renal interstitial fibrosis, a major pathological feature of progressive kidney diseases, remains poorly understood. Autophagy has been implicated in renal fibrosis, but whether it promotes or inhibits fibrosis remains controversial. Moreover, it is unclear how autophagy is activated and sustained in renal fibrosis. The present study was designed to address these questions using the in vivo mouse model of unilateral ureteral obstruction and the in vitro model of hypoxia in renal tubular cells. Both models showed the activation of hypoxia-inducible factor-1 (HIF-1) and autophagy along with fibrotic changes. Inhibition of autophagy with chloroquine reduced renal fibrosis in unilateral ureteral obstruction model, whereas chloroquine and autophagy-related gene 7 knockdown decreased fibrotic changes in cultured renal proximal tubular cells, supporting a profibrotic role of autophagy. Notably, pharmacological and genetic inhibition of HIF-1 led to the suppression of autophagy and renal fibrosis in these models. Mechanistically, knock down of BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a downstream target gene of HIF, decreased autophagy and fibrotic changes during hypoxia in BUMPT cells. Together, these results suggest that HIF-1 may activate autophagy via BNIP3 in renal tubular cells to facilitate the development of renal interstitial fibrosis.NEW & NOTEWORTHY Autophagy has been reported to participate in renal fibrosis, but its role and underlying activation mechanism is unclear. In this study, we report the role of HIF-1 in autophagy activation in models of renal fibrosis and further investigate the underlying mechanism.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Fator 1 Induzível por Hipóxia , Nefropatias/patologia , Hipóxia , Autofagia/genética , Fibrose , Cloroquina/farmacologia
6.
Cell Signal ; 113: 110969, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967691

RESUMO

Cisplatin, an effective anti-cancer drug, always causes acute kidney injury (AKI) by inducing mitochondrial damage. PIM1 is a serine/threonine kinase, which has been shown to regulate mitochondrial function. However, the role and mechanisms of PIM1 in cisplatin-induced AKI remain unexplored. This study aimed to investigate the effects of PIM1 in cisplatin-induced AKI and its underlying mechanisms. To established Cisplatin-induced AKI model, mice were given a single intraperitoneal injection(20 mg/kg) and BUMPT cells were treated with cisplatin(20 µM). PIM1 inhibitor AZD1208 was used to inhibit PIM1 and PIM1-experssing adenovirus was used to overexpress PIM1. Drp1 inhibitor P110 and pcDNA3-Drp1K38A were used to inhibit the activation of Drp1 and mitochondrial fission. The indicators of renal function, renal morphology, apoptosis and mitochondrial dysfunction were assessed to evaluate cisplatin-induced nephrotoxicity. We observed that PIM1 was activated in cisplatin-induced AKI in vivo and cisplatin-induced tubular cells injury in vitro. PIM1 inhibition aggravated cisplatin-induced AKI in vivo, while PIM1 overexpression attenuated cisplatin-induced kidney injury in vivo and in vitro. Moreover, inhibiting PIM1 exacerbated mitochondrial damage in mice, but overexpressing PIM1 relieved mitochondrial damage in mice and BUMPT cells. In mice and BUMPT cells, inhibiting PIM1 deregulated the expression of p-Drp1S637, overexpressing PIM1 upregulated the ex-pression of p-Drp1S637. And inhibiting Drp1 activity alleviated cell damage in BUMPT cells with PIM1 knockdown or inhibition. This study demonstrated the protective effect of PIM1 in cisplatin-induced AKI, and regulation of Drp1 activation might be the underlying mechanism. Altogether, PIM1 may be a potential therapeutic target for cisplatin-induced AKI.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose , Células Cultivadas , Cisplatino/farmacologia , Rim/metabolismo , Camundongos Endogâmicos C57BL
7.
Cell Death Dis ; 14(11): 724, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935658

RESUMO

The mechanism underlying acute kidney injury (AKI) and AKI-to-Chronic kidney disease (CKD) transition remains unclear, but mitochondrial dysfunction may be a key driving factor. Literature reports suggest that dual-specificity phosphatase 1 (DUSP1) plays a critical role in maintaining mitochondrial function and structural integrity. In this study, ischemic Acute Kidney Injury (AKI) and post-ischemic fibrosis models were established by clamping the renal pedicle with different reperfusion times. To investigate the role of DUSP1, constitutional Dusp1 knockout mice and tubular-specific Sting knockout mice were used. Mitochondrial damage was assessed through electron microscopy observation, measurements of mitochondrial membrane potential, mtDNA release, and BAX translocation. We found that Dusp1 expression was significantly upregulated in human transplant kidney tissue and mouse AKI tissue. Dusp1 gene deletion exacerbated acute ischemic injury, post-ischemic renal fibrosis, and tubular mitochondrial dysfunction in mice. Mechanistically, DUSP1 could directly bind to JNK, and DUSP1 deficiency could lead to aberrant phosphorylation of JNK and BAX mitochondria translocation. BAX translocation promoted mitochondrial DNA (mtDNA) leakage and activated the cGAS-STING pathway. Inhibition of JNK or BAX could inhibit mtDNA leakage. Furthermore, STING knockout or JNK inhibition could significantly mitigate the adverse effects of DUSP1 deficiency in ischemic AKI model. Collectively, our findings suggest that DUSP1 is a regulator for the protective response during AKI. DUSP1 protects against AKI by preventing BAX-induced mtDNA leakage and blocking excessive activation of the cGAS-STING signaling axis through JNK dephosphorylation.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Rim/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Nucleotidiltransferases/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
8.
Cancer Cell ; 41(9): 1650-1661.e4, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652006

RESUMO

Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem.


Assuntos
Algoritmos , Neoplasias Colorretais , Humanos , Biomarcadores , Biópsia , Instabilidade de Microssatélites , Neoplasias Colorretais/genética
9.
Cell Signal ; 110: 110801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37433399

RESUMO

The pathogenesis of renal ischemic diseases remains unclear. In this study, we demonstrate the induction of microRNA-132-3p (miR-132-3p) in ischemic acute kidney injury (AKI) and cultured renal tubular cells under oxidative stress. miR-132-3p mimic increased apoptosis in renal tubular cells and enhanced ischemic AKI in mice, whereas miR-132-3p inhibition offered protective effects. We analyzed miR-132-3p target genes through bioinformatic analysis and Sirt1 was predicted as the target gene of miR-132-3p. Luciferase microRNA target reporter assay further verified Sirt1 as a direct target of miR-132-3p. In cultured tubular cells and mouse kidneys, IRI and H2O2 treatment repressed Sirt1 and PGC-1α/NRF2/HO-1 expression, whereas anti-miR-132-3p preserved Sirt1 and PGC-1α/NRF2/HO-1 expression. In renal tubular, Sirt1 inhibitor suppressed PGC1-1α/NRF2/HO-1 expression and aggravated tubular apoptosis. Together, the results suggest that miR-132-3p induction aggravates ischemic AKI and oxidative stress by repressing Sirt1 expression, and miR-132-3p inhibition offers renal protection and may be a potential therapeutic target.


Assuntos
Injúria Renal Aguda , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão/metabolismo , Túbulos Renais/metabolismo , Estresse Oxidativo , Injúria Renal Aguda/genética , Apoptose/genética
10.
J Am Soc Nephrol ; 34(8): 1381-1397, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211637

RESUMO

SIGNIFICANCE STATEMENT: Cold storage-associated transplantation (CST) injury occurs in renal transplant from deceased donors, the main organ source. The pathogenesis of CST injury remains poorly understood, and effective therapies are not available. This study has demonstrated an important role of microRNAs in CST injury and revealed the changes in microRNA expression profiles. Specifically, microRNA-147 (miR-147) is consistently elevated during CST injury in mice and in dysfunctional renal grafts in humans. Mechanistically, NDUFA4 (a key component of mitochondrial respiration complex) is identified as a direct target of miR-147. By repressing NDUFA4, miR-147 induces mitochondrial damage and renal tubular cell death. Blockade of miR-147 and overexpression of NDUFA4 reduce CST injury and improve graft function, unveiling miR-147 and NDUFA4 as new therapeutic targets in kidney transplantation. BACKGROUND: Kidney injury due to cold storage-associated transplantation (CST) is a major factor determining the outcome of renal transplant, for which the role and regulation of microRNAs remain largely unclear. METHODS: The kidneys of proximal tubule Dicer (an enzyme for microRNA biogenesis) knockout mice and their wild-type littermates were subjected to CST to determine the function of microRNAs. Small RNA sequencing then profiled microRNA expression in mouse kidneys after CST. Anti-microRNA-147 (miR-147) and miR-147 mimic were used to examine the role of miR-147 in CST injury in mouse and renal tubular cell models. RESULTS: Knockout of Dicer from proximal tubules attenuated CST kidney injury in mice. RNA sequencing identified multiple microRNAs with differential expression in CST kidneys, among which miR-147 was induced consistently in mouse kidney transplants and in dysfunctional human kidney grafts. Anti-miR-147 protected against CST injury in mice and ameliorated mitochondrial dysfunction after ATP depletion injury in renal tubular cells in intro . Mechanistically, miR-147 was shown to target NDUFA4, a key component of the mitochondrial respiration complex. Silencing NDUFA4 aggravated renal tubular cell death, whereas overexpression of NDUFA4 prevented miR-147-induced cell death and mitochondrial dysfunction. Moreover, overexpression of NDUFA4 alleviated CST injury in mice. CONCLUSIONS: microRNAs, as a class of molecules, are pathogenic in CST injury and graft dysfunction. Specifically, miR-147 induced during CST represses NDUFA4, leading to mitochondrial damage and renal tubular cell death. These results unveil miR-147 and NDUFA4 as new therapeutic targets in kidney transplantation.


Assuntos
Transplante de Rim , MicroRNAs , Camundongos , Humanos , Animais , Camundongos Knockout , Rim/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Túbulos Renais/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo
11.
Int Immunopharmacol ; 118: 110110, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028272

RESUMO

Renal ischemia/reperfusion injury (IRI) is a significant clinical problem without effective therapy. Unbiased omics approaches may reveal key renal mediators to initiate IRI. S100-A8/A9 was identified as the most significantly upregulated gene and protein base on proteomic analysis and RNA sequencing during the early reperfusion stage. S100-A8/A9 levels were significantly increased 1 day after transplantation in patients with donation after brain death (DBD). S100-A8/A9 production was associated with CD11b+Ly6G+ CXCR2+ immunocytes infiltration. Administration of S100-A8/A9 blocker ABR238901 significantly alleviates renal tubular injury, inflammatory cell infiltration, and renal fibrosis after renal IRI. Mechanistically, S100-A8/A9 could promote renal tubular cell injury and profibrotic cytokine production via TLR4. In conclusion, our findings found that early activation of S100-A8/A9 in renal IRI and targeting S100-A8/A9 signaling alleviates tubular injury and inhibits inflammatory response and renal fibrosis, which may provide a novel target for the prevention and treatment of acute kidney injury.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Animais , Camundongos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteômica , Rim/patologia , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/patologia , Fibrose , Camundongos Endogâmicos C57BL
12.
Opt Lett ; 48(3): 755-758, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723581

RESUMO

Two coupled resonance modes can lead to exotic transmission spectra due to internal interference processes. Examples include electromagnetically induced transparency (EIT) in atoms and mode splitting in optics. The ability to control individual modes plays a crucial role in controlling such transmission spectra for practical applications. Here we experimentally demonstrate a controllable EIT-like mode splitting in a single microcavity using a double-port excitation. The mode splitting caused by internal coupling between two counter-propagating resonances can be effectively controlled by varying the power of the two inputs, as well as their relative phase. Moreover, the presence of asymmetric scattering in the microcavity leads to chiral behaviors in the mode splitting in the two propagating directions, manifesting itself in terms of a Fano-like resonance mode. These results may offer a compact platform for a tunable device in all-optical information processing.

13.
Cell Prolif ; 56(8): e13418, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36788635

RESUMO

Renal ischemia-reperfusion injury (IRI) is mainly responsible for acute kidney injury for which there is no effective therapy. Accumulating evidence has indicated the important role of mitophagy in mitochondrial homeostasis under stress. OGG1 (8-oxoguanine DNA glycosylase) is known for functions in excision repair of nuclear and mitochondrial DNA. However, the role of OGG1 in renal IRI remains unclear. Herein, we identified OGG1, induced during IRI, as a key factor mediating hypoxia-reoxygenation-induced apoptosis in vitro and renal tissue damage in a renal IRI model. We demonstrated that OGG1 expression during IRI negatively regulates mitophagy by suppressing the PINK1/Parkin pathway, thereby aggravating renal ischemic injury. OGG1 knockout and pharmacological inhibition attenuated renal IRI, in part by activating mitophagy. Our results elucidated the damaging role of OGG1 activation in renal IRI, which is associated with the regulatory role of the PINK1/Parkin pathway in mitophagy.


Assuntos
DNA Glicosilases , Traumatismo por Reperfusão , Humanos , Mitofagia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , DNA Glicosilases/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
14.
Am J Transplant ; 23(1): 11-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695612

RESUMO

Ischemia/reperfusion injury (IRI) is prone to occur after kidney transplantation, leading to delayed graft function (DGF). MicroRNAs play a crucial role in the pathogenesis of ischemia/reperfusion-induced acute kidney injury, and miR-20a-5p was found to be the most significantly upregulated gene in a DGF patient cohort. However, the roles of microRNAs in transplanted kidneys remain largely unknown. In this study, we found that miR-20a-5p was upregulated in the kidneys of acute kidney injury mice and in patients with DGF. We identified early growth response-1 as a critical upstream target and verified the binding of early growth response-1 to a predicted sequence in the promoter region of the miR-20a-5p gene. Functionally, the miR-20a-5p mimic attenuated IRI and postischemic renal fibrosis, whereas the miR-20a-5p inhibitor delivery aggravated IRI and fibrosis. Importantly, delivery of the miR-20a-5p mimic or inhibitor in the donor kidneys attenuated or aggravated renal loss and structural damage in cold storage transplantation injury. Furthermore, our study identified miR-20a-5p as a negative regulator of acyl-CoA synthetase long-chain family member 4 (ACSL4) by targeting the 3' untranslated region of ACSL4 mRNA, thereby inhibiting ACSL4-dependent ferroptosis. Our results suggest a potential therapeutic application of miR-20a-5p in kidney transplantation through the inhibition of ACSL4-dependent ferroptosis.


Assuntos
Injúria Renal Aguda , Ferroptose , MicroRNAs , Traumatismo por Reperfusão , Animais , Camundongos , MicroRNAs/genética , Rim/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/genética , Isquemia , Coenzima A Ligases/genética
15.
Int Immunopharmacol ; 114: 109563, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36513021

RESUMO

Renal ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), yet therapeutic approaches to alleviate IRI remain limited. PIM1 (provirus integration site for Moloney murine leukemia virus 1) is a constitutive serine threonine kinase that phosphorylates various substrates to regulate cell death and survival. However, the role of PIM1 in renal IRI remains unclear. This study aims to investigate the effect of PIM1 on renal IRI and explore its downstream regulatory mechanism. In this study, we inhibited or overexpressed PIM1 in mice and cultured proximal tubular cells, and then induced renal IRI model in vivo and hypoxia reoxygenation (HR) model in vitro. Renal function, renal structure injuries and cellular death were assessed to reflect the extent of IRI. The expression of PIM1 and the levels of ASK1, MAPK and their phosphorylated forms were detected by immunoblot. RNA sequencing of kidney cortex was performed to analyze downstream pathway of PIM1 in renal IRI. The results showed that PIM1 expression was significantly upregulated in renal IRI mouse model and in renal tubular cell HR model. AZD1208 (a PIM1 inhibitor) aggravated renal IRI, while PIM1 overexpression ameliorated renal IRI. This was involved in the regulation of the ASK1-MAPK pathway. Moreover, results demonstrated that ASK1 was a downstream target of PIM1 by administering Selonsertib (an inhibitor of ASK1 activity), and inhibiting ASK1 alleviated cell death after HR in PIM1 knockdown cells by reducing JNK/P38 activation. In conclusion, this study elucidated the protective effect of PIM1 on renal IRI, and the underlying mechanism may be related to ASK1-JNK/P38 signaling pathway. Taken together, PIM1 may be a potential therapeutic target for renal IRI.


Assuntos
Nefropatias , Traumatismo por Reperfusão , Camundongos , Animais , Transdução de Sinais , Rim/metabolismo , Traumatismo por Reperfusão/metabolismo , Nefropatias/metabolismo , Sistema de Sinalização das MAP Quinases , Apoptose
16.
Cells ; 11(24)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552715

RESUMO

Histone deacetylase (HDAC) 6 exists exclusively in cytoplasm and deacetylates cytoplasmic proteins such as α-tubulin. HDAC6 dysfunction is associated with several pathological conditions in renal disorders, including UUO-induced fibrotic kidneys and rhabdomyolysis-induced nephropathy. However, the role of HDAC6 in ischemic acute kidney injury (AKI) and the mechanism by which HDAC6 inhibition protects tubular cells after AKI remain unclear. In the present study, we observed that HDAC6 was markedly activated in kidneys subjected to ischemia- and cisplatin (cis)-induced AKI treatment. Pharmacological inhibition of HDAC6 alleviated renal impairment and renal tubular damage after ischemia and cisplatin treatment. HDAC6 dysfunction was associated with decreased acetylation of α-tubulin at the residue of lysine 40 and autophagy. HDAC6 inhibition preserved acetyl-α-tubulin-enhanced autophagy flux in AKI and cultured tubular cells. Genetic ablation of the renal tubular (RT) Atg7 gene or pharmacological inhibition of autophagy suppressed the protective effects of HDAC6. Taken together, our study indicates that HDAC6 contributes to ischemia- and cisplatin-induced AKI by inhibiting autophagy and the acetylation of α-tubulin. These results suggest that HDAC6 could be a potential target for ischemic and nephrotoxic AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Desacetilase 6 de Histona , Isquemia , Humanos , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Autofagia/genética , Cisplatino/efeitos adversos , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Isquemia/genética , Isquemia/metabolismo , Tubulina (Proteína)/metabolismo
17.
Cell Mol Life Sci ; 79(8): 452, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895146

RESUMO

BACKGROUND: Cisplatin is an effective chemotherapeutic drug, but it may induce both acute and chronic kidney problems. The pathogenesis of chronic kidney disease (CKD) associated with cisplatin chemotherapy remains largely unclear. METHODS: Mice and renal tubular cells were subjected to repeated low-dose cisplatin (RLDC) treatment to induce CKD and related pathological changes. The roles of endoplasmic reticulum (ER) stress, PERK, and protein kinase C-δ (PKCδ) were determined using pharmacological inhibitors and genetic manipulation. RESULTS: ER stress was induced by RLDC in kidney tubular cells in both in vivo and in vitro models. ER stress inhibitors given immediately after RLDC attenuated kidney dysfunction, tubular atrophy, kidney fibrosis, and inflammation in mice. In cultured renal proximal tubular cells, inhibitors of ER stress or its signaling kinase PERK also suppressed RLDC-induced fibrotic changes and the expression of inflammatory cytokines. Interestingly, RLDC-induced PKCδ activation, which was blocked by ER stress or PERK inhibitors, suggesting PKCδ may act downstream of PERK. Indeed, suppression of PKCδ with a kinase-dead PKCδ (PKCδ-KD) or Pkcδ-shRNA attenuated RLDC-induced fibrotic and inflammatory changes. Moreover, the expression of active PKCδ-catalytic fragment (PKCδ-CF) diminished the beneficial effects of PERK inhibitor in RLDC-treated cells. Co-immunoprecipitation assay further suggested PERK binding to PKCδ. CONCLUSION: These results indicate that ER stress contributes to chronic kidney pathologies following cisplatin chemotherapy via the PERK-PKCδ pathway.


Assuntos
Estresse do Retículo Endoplasmático , Insuficiência Renal Crônica , Animais , Apoptose , Cisplatino/farmacologia , Camundongos , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Transdução de Sinais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
18.
Int Immunopharmacol ; 109: 108904, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696803

RESUMO

Acute kidney injury (AKI) is a critical and severe clinical disease caused by a variety of factors. Toll-like receptors (TLRs) play a crucial role in pathogenesis of AKI. Radioprotective 105 kDa protein (RP105) is a member of the TLR family, but the role of RP105 in AKI is unknown. In this study, we overexpressed RP105 in renal tissue and cultured proximal tubular cells in which we then induced ischemic and septic AKI. Renal structure injuries were examined by hematoxylin eosin staining, while renal function was assessed by measuring serum blood urea nitrogen (BUN) and creatinine (SCr) levels. The TUNEL assay was used to detect apoptosis induced changes in the expression of RP105, and nuclear factor κB (NF-κB) in renal tissue detected by Western blot. Inflammatory cytokines including iNOS, IL-1ß, IL-6, and TNF-α were detected by quantitative real-time PCR. The inflammatory indicators, F4/80 and MPO, were identified by IHC staining. The results showed that expression of the TLR4/NF-kB signaling pathway was enhanced in renal ischemia-reperfusion injury and septic renal injury, and that overexpression of RP105 in renal tissue alleviated ischemic and septic AKI. Moreover, RP105 gene delivery was associated with reduced renal inflammatory cells infiltration and inflammatory cytokines after AKI. RP105 overexpression also inhibited nuclear translocation of NF-κB after AKI in both in vitro and in vivo, and blunted the interaction between Myeloid Differentiation factor 2 (MD2) and TLR4. These results indicated that RP105 protected against renal ischemic and septic AKI injury by suppressing inflammatory responses mediated by TLR4 signaling pathways. This study suggests that the anti-inflammatory roles of RP105 have potential for preventing and treating renal ischemic and septic AKI.


Assuntos
Injúria Renal Aguda , Antígenos CD/metabolismo , Transdução de Sinais , Injúria Renal Aguda/metabolismo , Animais , Citocinas/metabolismo , Rim/patologia , Camundongos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo
19.
Ren Fail ; 44(1): 694-705, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35469547

RESUMO

OBJECTIVE: To investigate the effect of vitamin D/vitamin D receptor (VDR)/Atg16L1 signaling on podocyte autophagy and survival in diabetic nephropathy. METHODS: Diabetic rat models were induced by intraperitoneal injection of streptozotocin (STZ) (60 mg/kg) and treated with and without gavage of 0.1 µg/kg/d active vitamin D3 (aVitD3; 1,25- OH vitamin D3) and kidney tissues assessed by histopathology and immunohistochemistry. The murine podocyte cell line MPC-5 was cultured under hyperglycemic conditions in the absence or presence of 100 nmol/L calcitriol to investigate podocyte injury and autophagy. Cell survival rates were analyzed using Cell Counting Kit-8 (CCK-8) assays and the numbers of autophagosomes were determined after transduction with the mRFP-GFP-LC3 autophagy reporter construct. The expression of autophagy-related proteins (LC3-II, beclin-1, Atg16L1) and podocyte-related proteins (nephrin, podocin, synaptopodin, and desmin) was determined by Western blotting. RESULTS: VDR expression and autophagy were decreased in diabetic nephropathy. Calcitriol treatment repressed renal injury in rat diabetic kidneys and reduced high glucose-induced damage to cultured podocytes. Mechanistically, Atg16L1 was identified as a functional target of VDR, and siRNA-mediated knockdown of VDR and Atg16L1 blocked the protective effects of aVitD3 against podocyte damage. CONCLUSION: Autophagy protects podocytes from damage in DN and is modulated by VitD3/VDR signaling and downstream regulation of Atg16L1 expression.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Animais , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Calcitriol/metabolismo , Calcitriol/farmacologia , Colecalciferol/metabolismo , Colecalciferol/farmacologia , Nefropatias Diabéticas/patologia , Feminino , Humanos , Masculino , Camundongos , Podócitos/patologia , Ratos , Receptores de Calcitriol
20.
Front Immunol ; 13: 861498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464484

RESUMO

Kidney transplantation is a standard care for end stage renal disease, but it is also associated with a complex pathogenesis including ischemia-reperfusion injury, inflammation, and development of fibrosis. Over the past decade, accumulating evidence has suggested a role of epigenetic regulation in kidney transplantation, involving DNA methylation, histone modification, and various kinds of non-coding RNAs. Here, we analyze these recent studies supporting the role of epigenetic regulation in different pathological processes of kidney transplantation, i.e., ischemia-reperfusion injury, acute rejection, and chronic graft pathologies including renal interstitial fibrosis. Further investigation of epigenetic alterations, their pathological roles and underlying mechanisms in kidney transplantation may lead to new strategies for the discovery of novel diagnostic biomarkers and therapeutic interventions.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Metilação de DNA , Epigênese Genética , Feminino , Fibrose , Humanos , Transplante de Rim/efeitos adversos , Masculino , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...